583 research outputs found

    The Regulation and Expression of the Creatine Transporter: A Brief Review of Creatine Supplementation in Humans and Animals

    Get PDF
    Creatine monohydrate has become one of the most popular ergogenic sport supplements used today. It is a nonessential dietary compound that is both endogenously synthesized and naturally ingested through diet. Creatine ingested through supplementation has been observed to be absorbed into the muscle exclusively by means of a creatine transporter, CreaT1. The major rationale of creatine supplementation is to maximize the increase within the intracellular pool of total creatine (creatine + phosphocreatine). There is much evidence indicating that creatine supplementation can improve athletic performance and cellular bioenergetics, although variability does exist. It is hypothesized that this variability is due to the process that controls both the influx and efflux of creatine across the cell membrane, and is likely due to a decrease in activity of the creatine transporter from various compounding factors. Furthermore, additional data suggests that an individual's initial biological profile may partially determine the efficacy of a creatine supplementation protocol. This brief review will examine both animal and human research in relation to the regulation and expression of the creatine transporter (CreaT). The current literature is very preliminary in regards to examining how creatine supplementation affects CreaT expression while concomitantly following a resistance training regimen. In conclusion, it is prudent that future research begin to examine CreaT expression due to creatine supplementation in humans in much the same way as in animal models

    The decisions of Spanish youth : a cross-section study

    Get PDF
    The original publication is available at www.springerlink.comThis paper presents a simultaneous model for the joint decisions of working, studying and leaving the parental household by young people in Spain. Using cross-section data from the 1990–1991 Encuesta de Presupuestos Familiares, the model is estimated by a two stage estimation method. Endogeneity of the three decisions proves to be important in order to understand the dynamics of household formation. Our results also confirm a number of plausible intuitions about the effect of individual characteristics and economic variables on these decisions, and provide some new insights into the reasons for young people in Spain remaining in large numbers in the parental home. Most of the results are gender independent.Publicad

    Macrophages Are Required for Dendritic Cell Uptake of Respiratory Syncytial Virus from an Infected Epithelium

    Get PDF
    We have previously shown that the respiratory syncytial virus [RSV] can productively infect monocyte derived dendritic cells [MoDC] and remain dormant within the same cells for prolonged periods. It is therefore possible that infected dendritic cells act as a reservoir within the airways of individuals between annual epidemics. In the present study we explored the possibility that sub-epithelial DCs can be infected with RSV from differentiated bronchial epithelium and that in turn RSV from DCs can infect the epithelium. A dual co-culture model was established in which a differentiated primary airway epithelium on an Air Liquid Interface (ALI) was cultured on a transwell insert and MoDCs were subsequently added to the basolateral membrane of the insert. Further experiments were undertaken using a triple co-culture model in which in which macrophages were added to the apical surface of the differentiated epithelium. A modified RSV [rr-RSV] expressing a red fluorescent protein marker of replication was used to infect either the MoDCs or the differentiated epithelium and infection of the reciprocal cell type was assessed using confocal microscopy. Our data shows that primary epithelium became infected when rr-RSV infected MoDCs were introduced onto the basal surface of the transwell insert. MoDCs located beneath the epithelium did not become infected with virus from infected epithelial cells in the dual co-culture model. However when macrophages were present on the apical surface of the primary epithelium infection of the basal MoDCs occurred. Our data suggests that RSV infected dendritic cells readily transmit infection to epithelial cells even when they are located beneath the basal layer. However macrophages appear to be necessary for the transmission of infection from epithelial cells to basal dendritic cells

    Human metapneumovirus induces more severe disease and stronger innate immune response in BALB/c mice as compared with respiratory syncytial virus

    Get PDF
    BACKGROUND: Human metapneumovirus (HMPV) and respiratory syncytial virus (RSV) are members of the Pneumovirinae subfamily of Paramyxoviridae and can cause severe respiratory disease, especially in infants and young children. Some differences in the clinical course of these infections have been described, but there are few comparative data on pathogenesis in humans and animal models. In this study, HMPV and RSV were compared for replication, pathogenesis and immune induction in BALB/c mice infected with equivalent inocula of either virus. METHODS: Viral titers in the lungs and in the nasal turbinates of mice were determined by plaque assay. Histopathological changes in the lungs as well as weight loss and levels of airway obstruction were monitored in the infected mice to record the severity of illness. Inflammatory cells recruited to the lungs were characterized by flow cytometry and by differential staining. In the case of natural killer cells, cytotoxic activity was also measured. Cytokine levels in the BAL were determined by cytometric bead array. RESULTS: RSV replicated to higher titers than HMPV in the lung and in the upper respiratory tract (URT), and virus elimination from the lungs was more rapid in HMPV-infected mice. Clinical illness as determined by airway obstruction, weight loss, and histopathology was significantly more severe after HMPV infection. A comparison of the cellular immune response revealed similar recruitment of T lymphocytes with a predominance of IFN-γ-producing CD8+ T cells. By contrast, there were obvious differences in the innate immune response. After HMPV infection, more neutrophils could be detected in the airways and there were more activated NK cells than in RSV-infected mice. This correlated with higher levels of IL-6, TNF-α and MCP-1. CONCLUSION: This study shows important differences in HMPV and RSV pathogenesis and suggests that the pronounced innate immune response observed after HMPV infection might be instrumental in the severe pathology

    Ostriches Sleep like Platypuses

    Get PDF
    Mammals and birds engage in two distinct states of sleep, slow wave sleep (SWS) and rapid eye movement (REM) sleep. SWS is characterized by slow, high amplitude brain waves, while REM sleep is characterized by fast, low amplitude waves, known as activation, occurring with rapid eye movements and reduced muscle tone. However, monotremes (platypuses and echidnas), the most basal (or ‘ancient’) group of living mammals, show only a single sleep state that combines elements of SWS and REM sleep, suggesting that these states became temporally segregated in the common ancestor to marsupial and eutherian mammals. Whether sleep in basal birds resembles that of monotremes or other mammals and birds is unknown. Here, we provide the first description of brain activity during sleep in ostriches (Struthio camelus), a member of the most basal group of living birds. We found that the brain activity of sleeping ostriches is unique. Episodes of REM sleep were delineated by rapid eye movements, reduced muscle tone, and head movements, similar to those observed in other birds and mammals engaged in REM sleep; however, during REM sleep in ostriches, forebrain activity would flip between REM sleep-like activation and SWS-like slow waves, the latter reminiscent of sleep in the platypus. Moreover, the amount of REM sleep in ostriches is greater than in any other bird, just as in platypuses, which have more REM sleep than other mammals. These findings reveal a recurring sequence of steps in the evolution of sleep in which SWS and REM sleep arose from a single heterogeneous state that became temporally segregated into two distinct states. This common trajectory suggests that forebrain activation during REM sleep is an evolutionarily new feature, presumably involved in performing new sleep functions not found in more basal animals

    Human Metapneumovirus Glycoprotein G Inhibits Innate Immune Responses

    Get PDF
    Human metapneumovirus (hMPV) is a leading cause of acute respiratory tract infection in infants, as well as in the elderly and immunocompromised patients. No effective treatment or vaccine for hMPV is currently available. A recombinant hMPV lacking the G protein (rhMPV-ΔG) was recently developed as a potential vaccine candidate and shown to be attenuated in the respiratory tract of a rodent model of infection. The mechanism of its attenuation, as well as the role of G protein in modulation of hMPV-induced cellular responses in vitro, as well as in vivo, is currently unknown. In this study, we found that rhMPV-ΔG-infected airway epithelial cells produced higher levels of chemokines and type I interferon (IFN) compared to cells infected with rhMPV-WT. Infection of airway epithelial cells with rhMPV-ΔG enhanced activation of transcription factors belonging to the nuclear factor (NF)-κB and interferon regulatory factor (IRF) families, as revealed by increased nuclear translocation and/or phosphorylation of these transcription factors. Compared to rhMPV-WT, rhMPV-ΔG also increased IRF- and NF-κB-dependent gene transcription, which was reversely inhibited by G protein expression. Since RNA helicases have been shown to play a fundamental role in initiating viral-induced cellular signaling, we investigated whether retinoic induced gene (RIG)-I was the target of G protein inhibitory activity. We found that indeed G protein associated with RIG-I and inhibited RIG-I-dependent gene transcription, identifying an important mechanism by which hMPV affects innate immune responses. This is the first study investigating the role of hMPV G protein in cellular signaling and identifies G as an important virulence factor, as it inhibits the production of important immune and antiviral mediators by targeting RIG-I, a major intracellular viral RNA sensor

    Ablation of Dido3 compromises lineage commitment of stem cells in vitro and during early embryonic development

    Get PDF
    The death inducer obliterator (Dido) locus encodes three protein isoforms, of which Dido3 is the largest and most broadly expressed. Dido3 is a nuclear protein that forms part of the spindle assembly checkpoint (SAC) and is necessary for correct chromosome segregation in somatic and germ cells. Here we report that specific ablation of Dido3 function in mice causes lethal developmental defects at the onset of gastrulation. Although these defects are associated with centrosome amplification, spindle malformation and a DNA damage response, we provide evidence that embryonic lethality of the Dido3 mutation cannot be explained by its impact on chromosome segregation alone. We show that loss of Dido3 expression compromises differentiation of embryonic stem cells in vitro and of epiblast cells in vivo, resulting in early embryonic death at around day 8.5 of gestation. Close analysis of Dido3 mutant embryoid bodies indicates that ablation of Dido3, rather than producing a generalized differentiation blockade, delays the onset of lineage commitment at the primitive endoderm specification stage. The dual role of Dido3 in chromosome segregation and stem cell differentiation supports the implication of SAC components in stem cell fate decisions
    corecore